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Abstract

A computational study of laminar, incompressible flow past a cylinder oscillating in the streamwise direction is

performed using the two-dimensional unsteady Navier–Stokes equations in nonprimitive variables. The method of

solution is based on a conjugating Fourier spectral analysis with finite-difference approximations. The numerical

simulations are conducted at a fixed Reynolds number, R ¼ 200, and at displacement amplitude-to-cylinder diameter of

A ¼ 0:1 and 0:3. Results show the existence of symmetric/asymmetric modes of vortex formation in the cylinder wake at

different values of unsteady loading on the cylinder, which is characterized by the ratio of oscillation frequency, f, to

Kármán vortex-shedding frequency, f 0. For this paper, the frequency ratio is chosen from f =f 0 ¼ 0:5 to 3, where

switching from asymmetric to symmetric vortex shedding is observed. The relation between these vortex-shedding

modes and fluid forces on the cylinder surface is discussed. An analysis of the locked-on modes via Lissajous patterns of

unsteady lift coefficient is also included. Previously computed and observed flow fields as well as fluid forces are

compared to current numerical results and agreement is found to be excellent.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The flow around oscillating bluff bodies is an important engineering problem both from the academic and practical

points of view. Examples are chimney stacks, transmission lines, cables of suspended bridges, offshore structures and

risers, which are exposed to wind or ocean currents. The practical significance of this type of flow has led to a large

number of fundamental studies, many of which are discussed in the comprehensive reviews of King (1977), Sarpkaya

(1979, 2004), Naudascher (1987), Griffin and Hall (1991), Bearman (1984), Matsumoto (1999), Pier and Huerre (2001),

Williamson and Govardhan (2004); and in book chapters by Naudascher and Rockwell (1994), Zdravkovich (1997),

Sumer and Fredsøe (1997) and Anagnostopoulos (2002).
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In the present work, we are concerned with forced streamwise oscillations of a circular cylinder placed horizontally in

a uniform stream of a viscous incompressible fluid. Initially, a cylinder of infinite extent is immersed, and remains fixed

in a fluid flowing with free-stream velocity U, so that the longitudinal axis of the cylinder coincides with the z-axis of the

Cartesian coordinate system. The flow is assumed to be unsteady, laminar and two-dimensional. At time t� ¼ 0 the

cylinder impulsively starts to perform time-dependent sinusoidal oscillations in the streamwise (x) direction only with a

displacement represented by X �ðt�Þ ¼ �X �m cosð2pf �t�Þ. Here t� is the dimensional time; X �m and f � are the dimensional

amplitude and forcing frequency of cylinder displacement, respectively. The characteristic length and velocity scales are

taken to be the cylinder diameter d and free-stream velocity U, respectively. The dimensionless parameters are the

Reynolds number, R ¼ Ud=n, where n is the kinematic viscosity of the fluid; the amplitude of the cylinder oscillation

Að¼ X �m=dÞ; and the frequency ratio f =f 0, with f ¼ df �=U , and f 0 ¼ df �0=U being the dimensionless natural vortex-

shedding frequency of a stationary cylinder. Thus the dimensionless cylinder displacement is X ðtÞ ¼ �A cosð2pftÞ,

where t ¼ Ut�=d is the dimensionless time.

The majority of previous studies have concentrated on the phenomenon of vortex-shedding lock-on (or

synchronization) due to either forced or self-induced transverse oscillation of circular cylinders since the fluctuating

lift is the dominant force. It was only in the early 1970s that King et al. (1973), King (1974) and Wootton et al. (1974)

reported that streamwise vibrations can occur for full scale piles (or cantilevers) in an ocean current. For streamwise

oscillations, the range near f =f 0 � 2 constitutes the fundamental lock-on regime. The developing downstream wake in

conjunction with the entirely horizontal forcing of cylinder results in a lift coefficient with an irregular behavior as

reported by Kim (2000) and Karanth et al. (1995). This irregularity of the lift coefficient poses difficulty in confirming

the lock-on phenomenon through the classical power spectral density analysis. Taking this into account, in this study,

the locked-on flow regimes are analyzed via Lissajous patterns of unsteady lift coefficient. Defining the reduced velocity

as Vr ¼ U=f nd with f n being the natural frequency of a cylinder, the most important feature of a rigid spring-mounted

circular cylinder free to oscillate in the streamwise direction is the existence of two excitation regions separated by the

lock-on region found in the forced oscillation studies, which occurs around Vrð¼ U=f nd21=f Þ � 1=2f 0 � 2:5:
symmetric vortex shedding for Vro1=2f 0 and alternating vortex streets for Vr41=2f 0. The ranges found in forced

oscillation tests at low-oscillation amplitudes (Nishihara et al., 2005) agree well with the two streamwise excitation

regions observed in free oscillation tests at large oscillation amplitude cases (King et al., 1973; King, 1974; Nakamura

et al., 2001a, b; Okajima et al., 2002, 2004; Sakai et al., 2001). These experimental studies are conducted for high

Reynolds number flows.

One approach to understanding these two instability regions has been to conduct experiments using forced

streamwise oscillation of a cylinder in a uniform stream. Griffin and Ramberg (1976) demonstrated that at a Reynolds

number of R ¼ 190 the vortex shedding locks onto the forcing frequency over a range of frequencies from 120% to

250% of the natural shedding frequency (i.e., f =f 0 2 ½1:2; 2:5�). They observed two different asymmetric modes of

vortex formation in the wake at relatively low amplitudes (0:06pAp0:22) which correspond loosely to the known 2S

and 2P modes observed in transverse cylinder oscillations where two single and two pairs of vortices, respectively, are

shed per cycle (Williamson and Roshko, 1988). The asymmetric 2S mode corresponds to the classical Kármán vortex

street type of mode found for cantilevers. Ongoren and Rockwell (1988) observed both cantilever modes of vortex

formation at the small amplitude of A ¼ 0:13 and at a dimensionless frequency, f, of 0.1–0.8 and investigated the mode

competition in the near-wake. As f =f 0 is increased from 1:8 to 2:0, the mode of formation changed from the asymmetric

2S mode to asymmetric locked-on mode where one vortex pair and a single vortex were formed per cycle (Pþ S mode as

originally defined by Williamson and Roshko). At f =f 0 ¼ 3:0; 4:0, they observed additional lock-on states with the

symmetric vortex pair mode described earlier for cantilever studies: symmetric two single counter-rotating vortices are

shed in phase from both sides of the cylinder per cycle. The phenomenon of the formation of symmetric ‘‘twin’’ vortices

was also reported by Barbi et al. (1986) when the cylinder is stationary and the incident mean flow has a low-amplitude

periodic component superimposed upon it at a lower frequency ratio of f =f 0 ¼ 1. For relatively low amplitudes

(Konstantinidis et al., 2005), the wake pattern does not seem to change and remains at the 2S mode of Williamson

and Roshko. In these experimental studies, no attempt was made to measure fluctuating fluid forces, and only

qualitative information can be found except in the study by Konstantinidis et al. (2005) in which the forced wake was

analyzed quantitatively in terms of the phase-referenced vorticity patterns and the timing of the vortex-shedding

process.

Forced streamwise oscillation tests by Cetiner and Rockwell (2001) and Nishihara et al. (2005) focused on the precise

measurements of fluid forces as well as detailed flow visualizations of wake patterns. Cetiner and Rockwell (2001)

addressed the relationship between the fluid forces and the patterns of vorticity and streamline topology in the near-

wake through the time-averaged spectra of the forces. Their investigation is performed over the range of Reynolds

numbers 405pRp2842, frequency ratio 0:37pf =f 0p2:27 and Keulegan–Carpenter number 1pKCð¼ 2pAÞp10.

Their study demonstrated that for sufficiently large KC and sufficiently low-normalized velocity U=ð2pfAÞ, the lock-on
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regimes are attainable for frequency ratios close to 0.5, 1.0 and 2.0. The maximum of dimensionless peak amplitude of

the streamwise vortex-induced vibrations is less than 0.2. Taking this into account Tanida and Watanabe (1973)

measured unsteady drag on a circular cylinder in a streamwise oscillation at A ¼ 0:14 but sufficient data to discuss the

excitation mechanism has not been obtained. Nishihara et al. (2005) investigated the relation between the unsteady drag

force and the wake patterns at subcritical Reynolds numbers and A ¼ 0:05 over the frequency ratio range

0:5pf =f 0p4:0 in order to verify the excitation mechanism of streamwise vortex-induced vibration.

The flow field behind a cylinder placed in a uniform stream and forcibly oscillated at a specified amplitude and

frequency have also received attention from computationalists. Some of the above-mentioned phenomena of

streamwise oscillations have been confirmed by two-dimensional numerical simulations. Hurlbut et al. (1982)

considered three distinct forced oscillation cases: oscillations in a quiescent fluid; streamwise or transverse oscillations in

a uniform stream. Their investigation is based on a finite-difference scheme to solve the Navier–Stokes equations in

primitive variables. For the streamwise oscillation case, simulations are conducted at R ¼ 80; 100 : A ¼ 0:14 and

0of =f 0p2:5. Using a compact finite-difference scheme, Lecointe and Piguet (1989) simulated flow past a circular

cylinder that is simple harmonic and in the streamwise or transverse direction. For the streamwise oscillation case,

simulations are conducted at R ¼ 200, 855 : 0:13pAp0:5 and 0:8pf =f 0p3:0. Mittal et al. (1991) used a stabilized

space–time finite element formulation to compute incompressible flows, including flows involving oscillating cylinders.

One of the numerical examples considered in their study is flow past a cylinder which is subject to forced streamwise

oscillations at R ¼ 100 with symmetrical shedding (A ¼ 0:5, f =f 0 ¼ 2:1). Chang and Sa (1992) employed the Euler-

explicit finite-difference scheme together with a stabilized error vector propagation method to simulate the flow past an

oscillating cylinder. The simulations are conducted at R ¼ 100 : 0:1pAp0:4 and 1:8pf =f 0p2:4, and the cylinder is

allowed only harmonic motion in the streamwise direction. Sarpkaya et al. (1992) utilized a third-order in time, second-

order in space, three-level predictor–corrector finite-difference scheme to compute the flow at R ¼ 800 and sufficiently

large amplitude. Graham et al. (1993) employed a vortex method and focused on relatively large amplitude and low-

frequency oscillations using current speed to oscillatory velocity ratios between 0 and 5 at Reynolds numbers in the

range 800pRp5200. In these two-dimensional numerical investigations, only a short paper by Chang and Sa (1992)

focused solely on the forced streamwise oscillation case.

The objective of this study is to numerically investigate the unsteady wake structures and lock-on phenomena in the near-

wake region as well as the fluid forces at R ¼ 200 : A ¼ 0:1, 0:3 and 0:5pf =f 0p3:0. The near-wake vorticity contours and
Lissajous patterns of unsteady lift coefficient are used to analyze the lock-on phenomenon following partly the

methodology of Cetiner and Rockwell (2001). For comparison purposes the flow is calculated at R ¼ 855, A ¼ 0:13 and

f =f 0 ¼ 2:0; 3:0 and a series of numerical simulations are conducted in the stationary cylinder case at R ¼ 103. Forcing a

bluff body to oscillate introduces a mechanism for synchronizing the moment of shedding along its length. With this

consideration, two-dimensional numerical simulations should be reliable in terms of analyzing flow details. To date, a

detailed analysis of locked-on flow regimes, determined numerically, and analyzed in terms of near-wake vorticity contours

and Lissajous patterns of unsteady lift coefficient has not been available. We intend to focus on this analysis in this study.
2. Methodology

A flow configuration of the present model is shown in Fig. 1. The nondimensional governing equations for the

laminar two-dimensional motion of unsteady incompressible fluid are the Navier–Stokes equations together with the

continuity equation in the noninertial reference frame which is attached to the cylinder. These equations in vorticity-

stream-function formulation, after making use of the modified polar coordinates ðx; yÞ : xþ iy ¼ logðxþ iyÞ, are

e2x
qz
qt
¼

2

R

q2z

qx2
þ

q2z

qy2

� �
þ

qc
qx

qz
qy
�

qc
qy

qz
qx

, (1)

q2c

qx2
þ
q2c

qy2
¼ e2xz, (2)

where the domain of the problem is Dðx;y;tÞ ¼ fðx; y; tÞ : 0pxp1; 0pyo2p; tX0g.

On the surface of the cylinder, the boundary conditions for velocity components are those of no-slip and

impermeability conditions, i.e.,

c ¼
qc
qx
¼ 0 when x ¼ 0. (3)
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Fig. 1. The physical model and coordinate system.

Q.M. Al-Mdallal et al. / Journal of Fluids and Structures 23 (2007) 681–701684
At infinity, the boundary conditions are the free-stream condition and resulting decay of the vorticity. Mathematically,

these conditions are presented, respectively, as

e�x
qc
qy
! ð1þ _X ðtÞÞ cos y as x!1, (4)

e�x
qc
qx
! ð1þ _X ðtÞÞ sin y as x!1 (5)

and

z! 0 as x!1. (6)

As a result of the coordinate system employed, the dependent variables c and z should be periodic functions of y with

period 2p, i.e.,

zðx; y; tÞ ¼ zðx; yþ 2p; tÞ; cðx; y; tÞ ¼ cðx; yþ 2p; tÞ. (7)

Boundary condition (6) gives a requirement for the vorticity in the far field, but there is no explicit condition for the

vorticity on the surface of the cylinder at x ¼ 0. In this study, integral conditions are used to predict the surface

vorticity. Following the work of Dennis and Quartapelle (1989) and Dennis and Kocabiyik (1991), the conditions on

the stream function (4) and (5) are transformed into a set of global integral conditions on the vorticity using the

continuity equation (2) and applying one of Green’s identities to the flow domain. These integral conditions are given

by Z 1
0

Z 2p

0

eð2�pÞxzðx; y; tÞ cosðpyÞdydx ¼ 0, (8)

Z 1
0

Z 2p

0

eð2�pÞxzðx; y; tÞ sinðpyÞdydx ¼ 2pð _X ðtÞ þ 1Þdp;1 (9)

for p ¼ 0; 1; . . ., where dp;j is the Kronecker delta. Initial conditions for this set of equations will be addressed in the next

section.

These integral conditions are used in a recent study by Kocabiyik et al. (2004) in the case of an asymmetric flow

problem of an obliquely oscillating cylinder at an angle Z to that of the uniform stream. In their work, when Z ¼ 0,

integral conditions reduce to (8) and (9). The use of integral conditions in symmetric flow problems can also be found

[see, e.g., Badr et al. (1995)]. Badr et al. investigated a symmetrical flow induced by streamwise oscillations of a cylinder

placed in a quiescent viscous fluid by using a single set of integral conditions which is similar to (9). Due to the correct

numerical implementation of these conditions, the computed steady-state mean flow is found to be in excellent
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agreement with the experiments of Tatsuno [see VanDyke (1982, p. 23)]. The present study represents an extension of

that problem that takes into account the presence of a uniform background flow.

2.1. Numerical procedure

The numerical technique employed is due to Professor S.C.R. Dennis and has been successfully applied to

simulations of flows past cylinders including oscillating and steadily rotating cylinders [see, e.g., Al-Mdallal (2004),

Lawrence (2004) and the references cited therein]. Following the works of Collins and Dennis (1973a) and Badr and

Dennis (1985), the stream function c and vorticity z are expressed as a truncated Fourier series of the form

zðx; y; tÞ ’
1

2
G0ðx; tÞ þ

XN

n¼1

½Gnðx; tÞ cosðnyÞ þ gnðx; tÞ sinðnyÞ�, (10a)

cðx; y; tÞ ’
1

2
F0ðx; tÞ þ

XN

n¼1

½Fnðx; tÞ cosðnyÞ þ f nðx; tÞ sinðnyÞ�, (10b)

where N is the order of truncation. Substituting (10a,b) into (1) and (2), respectively, 4N þ 2 interdependent ordinary

differential equations given by

e2x
qG0

qt
¼

2

R

q2G0

qx2
þ
XN

m¼1

m
q
qx
ðFmgm � f mGmÞ, (11a)

e2x
qGn

qt
¼

2

R

q2Gn

qx2
� n2Gn

� �
�

1

2
nf n

qG0

qx
þ

1

2
Sn, (11b)

e2x
qgn

qt
¼

2

R

q2gn

qx2
� n2gn

� �
þ
1

2
nFn

qG0

qx
þ

1

2
Tn, (11c)

q2F0

qx2
¼ e2xG0;

q2Fn

qx2
� n2Fn ¼ e2xGn;

q2f n

qx2
� n2f n ¼ e2xgn, (12a,b,c)

are obtained, where

Sn ¼
XN

m¼1

½ðm� nÞFk þ lF l �
qgm

qx
� ½kf k þ lf l �

qGm

qx
þmgm

qFk

qx
þ

qFl

qx

� �
�mGm sgnðm� nÞ

qf k

qx
þ
qf l

qx

� �� �
, (13)

and

Tn ¼
XN

m¼1

½lf l � kf k�
qgm

qx
� ½ðm� nÞFk � lF l �

qGm

qx
�mGm

qFk

qx
�

qFl

qx

� �
�mgm sgnðm� nÞ

qf k

qx
�

qf l

qx

� �� �
(14)

for all integers 1pnpN with k ¼ jm� nj and l ¼ mþ n. Here, f 0 and g0 are assumed identically zero. The boundary

conditions associated with Eqs. (11) and (12) follow directly from (3), (6), (8) and (9). They are

Fn ¼ f n ¼
qFn

qx
¼

qf n

qx
¼ 0 at x ¼ 0, (15)

Z 1
0

eð2�nÞxGnðx; tÞdx ¼ 0;

Z 1
0

eð2�nÞxgnðx; tÞdx ¼ 2ð _X ðtÞ þ 1Þdn;1, (16)

Gnðx; tÞ ¼ gnðx; tÞ ¼ 0 as x!1 (17)

for n ¼ 0; 1; 2; . . . ;N and t40.

The domain of these equations in the physical coordinate system is given by Dðx;tÞ ¼ fðx; tÞ : x 2 ½0;1Þ; t40g.

The initial conditions for these equations are not immediately available. Thus, boundary-layer theory for impulsively

started flows is used to provide initial conditions by introducing the boundary-layer coordinate z through the

transformation

x ¼ kz, (18)
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where k ¼ ð8t=RÞ1=2 [see, e.g., Schlichting (2000)]. An order of magnitude analysis shows that c and z scale using k as

follows:

c ¼ kC; z ¼ o=k. (19)

Consequently, Eqs. (11b,c) and (12b,c) can be rewritten, respectively, in final form for small values of k, kp1, as

4t
qGn

qt
¼ e�2kz q

2Gn

qz2
þ 2z

qGn

qz
þ ð2� n2k2e�2kzÞGn � 2te�2kz n

qG0

qz
f n � Sn

� �
, (20)

4t
qgn

qt
¼ e�2kz q

2gn

qz2
þ 2z

qgn

qz
þ ð2� n2k2e�2kzÞgn þ 2te�2kz n

qG0

qz
Fn þ Tn

� �
, (21)

q2Fn

qz2
� n2k2Fn ¼ e2kzGn;

q2f n

qz2
� n2k2f n ¼ e2kzgn, (22,23)

where the domain Dðx;tÞ is transformed to Dðz;tÞ ¼ fðz; tÞ : z 2 ½0;1Þ; t40g. Here Sn and Tn are as before with x replaced

by z.

The boundary conditions that are associated with Eqs. (21) and (22) can be obtained easily from the boundary

conditions (15)–(17). The initial conditions at t ¼ 0 can be determined exactly following the methodology of Collins and

Dennis(1973b) and Badr and Dennis (1985). These conditions at time t ¼ 0 are given by

Gnðz; 0Þ ¼ 0; gnðz; 0Þ ¼
4 e�z2ffiffiffi

p
p dn;1; Fnðz; 0Þ ¼ 0; f nðz; 0Þ ¼ �2

1� e�z2ffiffiffi
p
p � zerfðzÞ

 !
dn;1 ð24Þ

for all z 2 ½0;1Þ.
The numerical solution of the set of equations both in boundary-layer and in physical coordinates has been discussed

in detail by Collins and Dennis (1973a) and Badr and Dennis (1985). Since the computational domain in the spatial, z

and x, directions is unbounded, a large enough artificial outer boundary, z1 and x1, respectively, must be chosen to

represent infinity for the numerical treatment. The solution through time domain is then divided into two distinct zones:

ð0; ts� and ðts; tmax�,

where ts represents the switching time from the boundary-layer coordinate, z, to the physical coordinate, x, and tmax

represents the time at the end of the calculations. The solution in the first zone begins following the start of fluid motion

and continues until the boundary-layer becomes thick enough to use physical coordinates at t ¼ ts (i.e.,

ks ¼ ð8t=RÞ1=2o1). In the second zone where the boundary-layer coordinate, z, is replaced by the physical coordinate,

x, the integration starts at t ¼ tþs and continues until the termination of calculations at t ¼ tmax. For the vorticity

components (G0, Gn or gn), the implicit Crank–Nicolson scheme is used to advance the solution a single time step to

t ¼ tjþ1. The central finite-difference formula is used to approximate derivatives with respect to the spatial coordinates,

z and x. The numerical solution for the corresponding stream function components Fn and f n is obtained using stable

integration procedures given by Dennis and Chang (1969) and Badr and Dennis (1985). The Gauss–Seidel iterative

method is incorporated to obtain a solution consistent for the full system. The convergence criterion is achieved when

the difference between two successive iterations of all the calculated solutions falls below the specified tolerance of

� ¼ 10�6.

In order to implement this numerical scheme correctly, careful attention is given to the selection of the numerical

parameters N ; ts; z1; x1 as well as the time steps Dtjþ1 and spatial steps hz and hx in both the boundary-layer and

physical coordinates (ðz; tÞ; ðx; tÞ), respectively. The uniform grids hz and hx should be chosen to be consistent with z1
and x1, respectively. Furthermore, numerical simulations suggest that choosing ts ¼ 20, so that kso1, provides

accurate results for the range of parameters considered. The ‘‘optimal’’ values for the remaining parameters are

determined by conducting simulations for each choice of flow parameters with the exception of the order of truncation

of the Fourier expansion which is arranged automatically. Initially there are two terms. Then, one more term is added

when the last term exceeds 10�3 with the maximum number of terms N ¼ 60. The rapid variation of vorticity near t ¼ 0

requires the use of a small time step initially. The time step is chosen as Dtjþ1 ¼ 10�3 for the first 10 steps, and then it is

increased to Dtjþ1 ¼ 10�2 for the rest of the calculations. The grid size in the z-direction is taken as hz ¼ 0:025 and the

artificial boundary z1 is restricted to 8.

Numerical simulations via C++ are carried out on a 64-processor Beowulf cluster located in the Department of

Mathematics and Statistics, and on a Silicon Graphics (SGI) Onyx 3400 computer, which has 28 400MHz IP35 MIPS
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R12000 processors, located in the Advanced Computation and Visualization Centre, both at Memorial University of

Newfoundland.
2.2. Force calculation

The fluid forces exerted on the cylinder surface are represented by the dimensionless drag and lift coefficients, defined

as

CD ¼
D

1
2
rU2d

; CL ¼
L

1
2
rU2d

, (25)

where D and L are the drag and lift forces exerted on a unit length of the cylinder, respectively; and r is the fluid density.

The final expressions, after integrating the normal and shear stresses around a closed contour that contains the cylinder

(or Stoke’s relations), are

CD ¼
D

1
2
rU2d

¼
2

R

Z 2p

0

zjx¼0 sin ydy�
2

R

Z 2p

0

qz
qx

				
x¼0

sin ydy� p €X ðtÞ, (26a)

CL ¼
L

1
2
rU2d

¼ �
2

R

Z 2p

0

zjx¼0 cos ydyþ
2

R

Z 2p

0

qz
qx

				
x¼0

cos ydy. (26b)

The first integral in each expression of (26a) represents the coefficient due to friction and the second terms are due to

pressure. Further, the term �p €X ðtÞ appearing in the drag coefficient is a result of the acceleration due to time-dependent

cylinder oscillation.
2.3. Validation

The reliability of the mathematical model as well as the accuracy of the present method are presented for uniform

flow past a stationary cylinder and a cylinder undergoing forced streamwise oscillations in a uniform free-stream. As is

well known, if unaltered, any numerical method [see, e.g., Braza et al. (1986)] produces symmetric vortices behind the

cylinder for all times, for the mathematical models used to describe these cases, although the physical flows are

asymmetric. This behavior results from the fact that, at any instant, the total speed of the upper and lower parts of the

cylinder (and thus the behavior of fluid in these regions) are exactly the same, as a result of the symmetric boundary

conditions imposed on the flow. However, physically realistic flows of this type are not symmetric and thus a velocity

gradient must exist for the fluid on the cylinder surface. Taking this into account, an artificial perturbation is imposed to

break this perfect numerical symmetry, which is similar to that reported in previous studies (Martinez and Hinh, 1978;

Braza et al., 1986; Justesen, 1991) in which a clockwise rotation of the circular cylinder was followed after a short period

of time by a counterclockwise rotation. Following the work of Braza et al. (1986), a perturbation is implemented with

dimensionless angular displacement given by

YðtÞ ¼ �
p
4
cos

2p
5

t

� �
(27)

for a full period of rotational oscillation.

The drag coefficient for the case of uniform flow past a stationary cylinder at R ¼ 103 is compared with the results of

Cheng et al. (1997), Koumoutsakos and Leonard (1995), and Qian and Vezza (2001) in Fig. 2 [reproduced from

Lawrence (2004)]. In each of these studies, a different numerical scheme is used to integrate the governing equations.

The instantaneous streamlines at dimensionless time t ¼ 2:5 are also given in Fig. 3 [reproduced from Lawrence (2004)].

From these figures it is apparent that our numerical scheme can accurately predict the flow from the beginning of the

calculations. To compare with the experimental findings of Ongoren and Rockwell (1988), numerical simulations are

performed at R ¼ 855 for uniform flow past a cylinder subject to streamwise oscillations. Fig. 4 [reproduced from

Al-Mdallal (2004)] shows the comparison of the near-wake structure obtained in the present study when R ¼ 855,

A ¼ 0:13 and f =f 0 ¼ 2:0, 3:0 with that obtained by Ongoren and Rockwell (1988). It should be noted that the number

of oscillation cycles for the experimental trials of Ongoren and Rockwell (1988) is considerably higher than that of the

present case. Nonetheless, there is remarkable agreement between our computed near-wake structures and those shown

in the experimental images.
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(1997); þ, Koumoutsakos and Leonard (1995); ��, Qian and Vezza (2001).

Fig. 3. Comparison of streamline patterns for the case of uniform flow past a stationary cylinder at R ¼ 103: (a) Qian and Vezza

(2001); (b) present.

Fig. 4. Comparison of Left: flow visualization of Ongoren and Rockwell (1988); Middle: computed present equivorticity lines; Right:

streamline patterns for R ¼ 855, A ¼ 0:13 at frequency ratios. (a) f =f 0 ¼ 2:0; (b) f =f 0 ¼ 3:0. All snapshots are taken at the instant

corresponding to the maximum negative displacement.
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3. Results and discussion

The present numerical simulations confirmed two basic groups of asymmetric and symmetric modes of vortex

formation in the near-wake region which have been consistently observed in several previous studies [see, e.g., Ongoren

and Rockwell (1988), Lecointe and Piguet (1989)]. There is a single symmetric vortex pair mode and there are three

basic asymmetric modes, 2S, S+P and 2P, where S and P indicate a ‘single’ vortex and a ‘pair’ of shed vortices,

respectively, as described in the introduction section. A single vortex-shedding cycle, Tv, is defined as the time interval

required to complete one cycle of vortex shedding and it is related to the cylinder oscillation period, Tð¼ 1=f Þ, by

Tv ¼ n T : n either fraction or integer number. We note that increasing the forcing frequency and oscillation amplitude

beyond a certain value results in the formation of secondary vortices adjacent to the dominant vortices being shed, but

these vortices coalesce very close to the cylinder, before the secondary vortices obtain a clearly defined center. These

vortices will not be used in the classification process. We use the terminology of Williamson and Roshko (1988) from

their transverse forced experiments to categorize vortex formation modes resulting from forced streamwise cylinder

oscillation in the near-wake region. This is consistent with streamwise mode classification reported in the literature [see,

e.g., Jauvtis and Williamson (2004), Konstantinidis et al. (2005)]. However, Ongoren and Rockwell (1988) classified (i)

symmetric vortex pair mode (per T) as ‘‘the symmetric S mode’’ and (ii) asymmetric modes: 2S (per T), 2S (per 2T), S+P

(per 2T) and 2P (per 2T) as ‘‘the asymmetric AI, AII, AIII and AIV modes’’, respectively. In classifying these modes,

only the near-wake region is considered by Ongoren and Rockwell, whereas Williamson and Roshko consider the entire

wake of the cylinder and are not concerned with these near-field formations. Moreover, Ongoren and Rockwell (1988)

noted that under certain conditions a mirror image of the near-wake pattern, which can persist for 50 or more cycles of

oscillation, is formed if the flow is stopped and restarted. This is one example of the complexity of the flow patterns

which accompany the oscillations. For example, when f ¼ 2f 0 the oscillation and vortex frequencies are phase locked,

but under other nonresonant conditions there is competition between the symmetric and asymmetric modes. Under

these conditions, the lock-on persists in one mode over a specified number of cycles and then switches to other mode.

The mode competition is influenced by the upstream feedback of disturbances from the near-wake of the cylinder. In

our numerical study when different types of perturbations are used, a mirror image of the mode 2S per 2T is formed.

A more general approach for categorizing the vortex-shedding modes is taken by Zdravkovich (1996) in which vortex

shedding from a cylinder is classified as either in a low-speed mode or a high-speed mode. The low speed is related to

laminar wake instability whereas the high-speed mode is related to vortex formation and shedding. The transition

between these two states is characterized by distortions of eddy filaments in the near-wake, referred to as ‘fingers’ which
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cause irregular vortex filaments to appear along the span. Zdravkovich (1996) also described two modes in the

streamwise oscillation of a cylinder near the synchronization frequency: one vortex formed per half-cycle and two

vortices formed per half-cycle. The transition state from the first mode to the second mode is characterized by one

vortex formed in odd half-cycles and two vortices formed in even half-cycles.

Finally, it is noted that the classical definition of locked-on flow regimes is based on the existence of a dominant peak

in the power spectral density of the lift coefficient. However, the determination of locked-on flow regimes is not

confined to the power spectral density analysis of the lift records. For instance, Anagnostopoulos (2000) uses the power

spectral density analysis or repetition of the velocity traces to classify locked-on modes and Ongoren and Rockwell

(1988) classify lock-on regimes based on a repetition of vortex shedding in the near-wake region over an integer number

of cylinder oscillation periods. In this study, locked-on flow regimes are analyzed in terms of near-wake vorticity

contours and Lissajous patterns of unsteady lift coefficient, following partly the methodology of Cetiner and Rockwell

(2001). The main calculations are performed at R ¼ 200 and A ¼ 0:1; 0:3 while the frequency ratio f =f 0 varies from 0:5
to 3 by increments of 0:05. Only those cases necessary to support claims are presented. For comparison purposes, the

flow is also calculated at R ¼ 855, A ¼ 0:13 and f =f 0 ¼ 2:0; 3:0, and a series of numerical simulations are conducted in

the stationary cylinder case at R ¼ 103, as shown in Validation section. Predicted values for f 0 at R ¼ 200; 855 are

0:195; 0:22, respectively, and they are calculated using the power spectral density of the lift coefficient for the case of

uniform flow past a stationary circular cylinder.

3.1. Amplitude A ¼ 0:1

The case for R ¼ 200 and A ¼ 0:1 is first considered. The time history of the fluctuating lift coefficients up to

nondimensional time t ¼ 60 (left) and the corresponding Lissajous patterns (i.e., X ðtÞ=A versus CLðtÞ) (right) are shown

in Fig. 5 for 1:5pf =f 0p2:2. It is clear that the cylinder excitation in all cases produces a repetitive signature of the lift

coefficient every two cycles of cylinder oscillation, 2T , which is also suggested by the corresponding Lissajous pattern.

These observations suggest that the vortex shedding in the near-wake region is locked-on over two periods, 2T . Fig. 6

displays typical equivorticity patterns for f =f 0 ¼ 1:5; 1:75; 1:95; 2:2 over two periods of cylinder oscillation with the

corresponding excerpt from the lift coefficient displayed above. The snapshots are taken at the instant X ðtÞ ¼ A and

every half oscillation cycle thereafter as marked by the boxes on the lift curves. As will be the case in all equivorticity

plots that follow, positive contours are indicated by solid lines and negative contours by dashed lines. The snapshots at

t ¼ 0 (top) and t ¼ 2T (bottom) for all cases are nearly identical. Therefore, the lock-on occurs over a span of frequency

that brackets twice the natural shedding frequency given by f =f 0 2 ½1:5; 2:2�. In this range, the pronounced decrease of

vortex formation length as f =f 0 increases from 1:5 to 2:2 causes the disappearance of the second weaker vortex from

each side of the cylinder. Consequently, the locked-on asymmetric 2P, mode per 2T is observed for 1:5pf =f 0p2:0 and

the locked-on asymmetric 2S mode per 2T for 2:0of =f 0p2:2. In the 2P mode, the second weaker vortex of each pair

vanishes downstream at or before a distance d measured from the trailing edge of the cylinder. However, it is observed

that for f =f 0p1:85 this smaller vortex decays, whereas for f =f 041:85 it coalesces with the larger vortex (another result

of the shortening formation length). This noted decrease in the formation length is well documented in the

visualizations of Ongoren and Rockwell (1988) at different flow parameters. Investigation of the lift coefficient (see

Fig. 7) and the structure of the near-wake region at f =f 0 ¼ 2:8 leads to the locked-on behavior shown in Fig. 8. Typical

equivorticity and streamline visualizations as well as the lift coefficient display a quasi-periodic pattern every three

periods of cylinder oscillation (3T), referred to as ‘tertiary’ lock-on. In this mode, three vortices develop on each side of

the cylinder over three periods of cylinder, oscillation yielding a total of six shed vortices. The three vortices shed from
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the upper side of the cylinder immediately coalesce in the near-wake region to form a single large vortex. In contrast,

only two of three vortices developing on the bottom side of the cylinder coalesce, while the third vortex remains

detached. Consequently, this mode of vortex formation is referred to as the asymmetric 6S! Pþ S mode per 3T . In
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this manner the dynamics of the mode before (6S) and after (P+S) coalescence, respectively, are described effectively.

This phenomenon is not observed for any other values of the forcing frequency.

Lock-on is not observed at any other frequency ratio in 0:5pf =f 0p3:0. Fig. 9 displays the lift and Lissajous curves

for selected values of cylinder excitation frequency (f =f 0 ¼ 0:55, 1:0 and 1.45) outside of the lock-on ranges discussed.

Neither of these curves show a phase-locked pattern which is indicative of lock-on. At f =f 0 ¼ 1:0, the lift pattern is

nearly locked-on but it is concluded that it has not yet locked-on to the cylinder oscillation frequency. To support this

claim, Fig. 10 displays a series of instantaneous equivorticity contours over 11 forcing periods. The snapshots are taken

at the instant X ðtÞ ¼ A, and every full cycle of oscillation thereafter as indicated on the lift curve in the upper-left corner

of the figure. It is evident from this figure that the near-wake frequency is not locked-on to the cylinder oscillation

frequency.

The effect of the frequency ratio, f =f 0, on the lift and drag coefficients is displayed in Fig. 11. The maximum lift

coefficient, CL;max, and time-averaged drag coefficient, C̄D, display a significant peak within the synchronization range,

reaching a maximum near 2:0. The increase of both CL;max and C̄D within this lock-on range has been reported by

Hurlbut et al. (1982), Clift et al. (1978), and others. The drag coefficient, CD, oscillates at the forcing frequency, f, in-

phase with the cylinder displacement, X, as a result of the purely horizontal motion. As the cylinder oscillation

frequency increases, the maximum drag coefficient CD;max increases and the minimum drag coefficient CD;min decreases

yielding a successive increase in the amplitude of the drag coefficient, CD;amp.

In summary, for the low-amplitude case the vortex-shedding at the considered values of the forcing frequencies is

characterized by asymmetric modes in the near-wake region. Furthermore, an increase of the CL;max and C̄D within the

fundamental lock-on frequency range (f =f 0 � 2) is observed.
3.2. Amplitude A ¼ 0:3

Fig. 12 displays the lift coefficients and corresponding Lissajous patterns for selected values of the forcing frequency

from f =f 0 ¼ 1:1 to f =f 0 ¼ 3:0 when R ¼ 200 and A ¼ 0:3. This figure indicates that the lift has a repetitive behavior

every two cycles of oscillation when f =f 0 2 ½1:1; 1:8�, suggesting the existence of an asymmetric vortex-shedding mode.

The amplitude of the lift coefficients seems damped when f =f 0 2 ½1:85; 3�, a characteristic of a symmetric vortex-

shedding mode. Hence, locked-on flow at A ¼ 0:3 is found to occur within the frequency ratio range of ½1:1; 3:0�, a much

larger range than found at A ¼ 0:1.
Fig. 13 shows typical equivorticity patterns for f =f 0 ¼ 1:10, 1:30, 1:40, 1:50 and 1:80 over two periods of cylinder

oscillation, with snapshots taken at X ðtÞ ¼ A and every half-cycle thereafter.The locked-on asymmetric modes 2P per

2T when f =f 0 2 ½1:1; 1:25�, P+S per 2T when f =f 0 2 ½1:30; 1:75� and 2S per 2T when f =f 0 ¼ 1:8 are verified in this

figure. At f =f 0 ¼ 1:1� 1:25 the formation of the vortices just behind the cylinder appears to be P+S with the single

vortex being shed from the bottom of the cylinder. The formation length for this vortex is long and it is observed that

the shed layer remains in the near-wake during the shedding of the top vortices. The larger of the two vortices being
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shed from the top has opposite rotation to its counterpart being shed from the bottom. As a result the fluid which would

have just dissipated in the shed layer under ordinary circumstances begins to recirculate, creating a second weaker

vortex on the bottom of the cylinder, and hence the 2P mode in this range of frequencies. This phenomenon is most

pronounced at f =f 0 ¼ 1:25 where the 2P mode has completely developed in the wake. The shortening of vortex

formation length at f =f 0 ¼ 1:3 and resultant strengthening of the bottom vortex diminishes the effect of the top

vortices, yielding the P+S mode for further values of the forcing frequency up to f =f 0 ¼ 1:8. At f =f 0 ¼ 1:8, the
formation length has shortened so much that the large vortex shedding from the bottom of the cylinder is causing the

first vortex on the top to appear elongated and weakened. As a result, although remnants of the P+S in the near-wake

are still observed, the transition is certainly towards the asymmetric 2S mode which is evident shortly downstream. At

f =f 0 ¼ 1:8, it is also noted that the near-wake structure shows a quasi-periodic pattern every T=2 (i.e., snapshots every

T=2 are mirror images of one another). For 1:85pf =f 0p3:0, the vortex-shedding patterns display a synchronized

symmetric vortex pair mode per T as seen in Fig. 14. In the figure, a pair of vortices are simultaneously shed from each

side of the cylinder during one oscillation cycle which preserve their symmetry for a long distance downstream. Each of

these large vortices is accompanied by a smaller counter-rotating vortex which quickly decays before moving

downstream, a finding which is consistent with the experimental results of Ongoren and Rockwell (1988, p. 229). The

appearance of these secondary vortices is attributed to the instability of flow in the shear layer around the cylinder. As a

result of this symmetry, irrotational fluid is drawn along the wake centerline towards the cylinder base.
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Fig. 15. Equivorticity lines at an instant corresponding to the maximum positive displacement for R ¼ 200, A ¼ 0:3: (a) f =f 0 ¼ 1:80;
(b) f =f 0 ¼ 1:81; (c) f =f 0 ¼ 1:82; (d) f =f 0 ¼ 1:83; (e) f =f 0 ¼ 1:84; (f) f =f 0 ¼ 1:85.
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Further insight into the transition from the asymmetrical to symmetrical modes of vortex-shedding is shown in

Fig. 15. Equivorticity contours for f =f 0 ¼ 1:80, 1.81, 1.82, 1.83, 1.84, 1.85 are displayed at the instant corresponding to

the maximum positive displacement of cylinder. A reduction in the upper vortex-shedding layer and an increase in the

strength of the bottom shedding vortex is captured as f =f 0 increases. This mechanism continues until the strength of the

upper and lower vortices becomes the same, resulting in the symmetric vortex pair mode.

Fig. 16 displays results from the fluid forces acting on the surface of the cylinder as a function of the frequency ratio

f =f 0. Figs. 16(a), (b) and (c), respectively, show CL;max, C̄D and CD;amp. The jump and significant reduction in C̄D and

CL;max at f =f 0 ¼ 1:85 is observed as the wake makes a transition from its asymmetric form to the symmetric form. This

transition, however, has no effect on the amplitude of the drag coefficient, CD;amp, which steadily increases as f =f 0

increases. An increase in the drag coefficient amplitude is also observed for increasing amplitude of oscillation (compare

with A ¼ 0:1, Fig. 11).

4. Concluding remarks

A comprehensive analysis of locked-on flow regimes, determined numerically, and analyzed in terms of near-wake

equivorticity contours and Lissajous patterns of unsteady lift coefficient, is presented as a result of forced streamwise

cylinder oscillations in a uniform stream. Two-dimensional numerical simulations are conducted at R ¼ 200 : A ¼ 0:1; 0:3
and 0:5pf =f 0p3:0 using an accurate spectral finite-difference method. The well-known lock-on range (f =f 0 � 2:0) for the
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streamwise oscillations is verified at R ¼ 200 and A ¼ 0:1; 0:3. Lock-on ranges are larger with the increase of the amplitude

from 0:1 to 0:3, reflecting the dominance of the oscillatory motion over the uniform translation for increasing amplitude.

Symmetric and antisymmetric locked-on modes are observed as the amplitude of oscillation increased. Resulting modes are

consistent with the modes observed in several previous free and forced oscillation studies [see, e.g., Ongoren and Rockwell

(1988)]. We note that Ongoren and Rockwell conducted their experiments at a fixed oscillation amplitude of A ¼ 0:13 (i.e.,

the effect of increasing amplitude on near-wake is not investigated). At low amplitude, lock-on transition from the 2P to 2S

mode per 2T is observed in the range 1:5pf =f 0p2:2, corresponding to a significant increase in the fluid forces near

f =f 0 ¼ 2:0. Then, transition to the lock-on S+P mode per 3T occurs at f =f 0 ¼ 2:8. The transition state is observed from

six shed vortices (per 3T) to the P+S mode per 3T at f =f 0 ¼ 2:8. This results from the coalescence of three shed vortices

from upper side of the cylinder and the coalescence of two of the three vortices developing on the bottom side of the

cylinder over three periods of cylinder oscillation. This phenomenon is not observed for other values of the forcing

frequency ratios. The symmetric vortex-shedding mode is observed for increasing forcing frequency at A ¼ 0:3, whereas the
flow is entirely asymmetric for A ¼ 0:1. This is consistent with the experimental findings of Konstantinidis et al. (2005) who

reported that the wake pattern does not change and remains at the asymmetric 2S mode, for relatively low amplitudes

(0:042pAp0:053). The transition from asymmetric to symmetric vortex-shedding modes and its relation to the fluid forces

are also discussed. Due to the symmetrical flow component, the lift force shows a dramatic decrease as the symmetric

modes develop in the wake.
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